

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BSAM	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: JANUARY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION PAPER	
EXAMINER	DR. NEGA CHERE
MODERATOR:	DR. DAVID IIYAMBO

INSTRUCTIONS	
1.	Answer ALL the questions in the booklet provided.
2.	Show clearly all the steps used in the calculations.
3.	All written work must be done in blue or black ink and sketches must
	be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [36]

Let V and W be vector spaces over a filed \mathbb{R} and $T: V \to W$ be a mapping.

1.1. State what does it means to say T is linear.

[3]

1.2. Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 be defined by $T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}y+z\\z\\x-z\end{bmatrix}$.

(a) Show that T is linear.

[14]

[7]

- (b) Find the matrix of T with respect to the standard basis of \mathbb{R}^3 .
- (c) Use the result in (b) to find the Characteristic polynomial of T.

[5]

1.3. Let T: $\mathbb{R}^3 \to \mathbb{R}^2$ be given by T(x, y, z) = (|x|, y + z). Determine whether T is linear on not.

[7]

QUESTION 2 [23]

2.1. Let $\mathcal{B}=\{v_1,v_2\}$ and $C=\{u_1,u_2\}$ be bases for a vector space V and suppose

$$v_1 = 6u_1 - 2u_2$$
 and $v_2 = 9u_1 - 4u_2$.

(b) Use part (a) to find $[x]_C$ for $x = -3v_1 + 2v_2$.

[5]

(a) Find the change of coordinate matrix from $\,\mathcal{B}$ to C.

[5]

2.2. In P_2 , find the change-of-coordinates matrix from the basis

$$\mathcal{B} = \{1 - 2t + t^2, 3 + 4t^2, 2t + 3t^2\} \text{ to the standard basis } S = \{1, t, t^2\}.$$
 [5]

2.3. Let $\mathcal{B}=\{v_1,v_2,v_3\}$ be a basis of \mathbb{R}^3 in which $v_1=(1,1,0),v_2=(0,1,2)$ and

 $v_3 = (1, 0, -1)$. Find the coordinate vector of v = (1, 2, 3) with respect to the basis \mathcal{B} . [8]

QUESTION 3 [8]

Let $A = PDP^{-1}$ where $P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Then Compute A^{10} .

QUESTION 4 [10]

Find the quadratic form q(X) that corresponds to the symmetric matrix

$$\begin{bmatrix} 0 & 4 & 2 \\ 4 & 1 & 3 \\ 2 & 3 & -2 \end{bmatrix}.$$
 [10]

QUESTION 5 [23]

5.1. Is
$$\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$? If so, find the corresponding eigenvalue.

5.2. Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & -2 \\ 3 & 0 & 3 \end{bmatrix}$$
. Find the eigenvalues of A and the eigenspace corresponding to the largest eigenvalue. [17]

END OF SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER